首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  国内免费   2篇
地质学   9篇
  2020年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2006年   2篇
  2004年   1篇
  2000年   1篇
  1993年   1篇
排序方式: 共有9条查询结果,搜索用时 140 毫秒
1
1.
新疆伽师砂岩型铜矿床地质及S、Pb同位素地球化学   总被引:4,自引:1,他引:3  
西南天山新生代山前盆地中的伽师铜矿是新疆近年发现和开发的一个重要的砂岩型铜矿,矿体产于古近系灰白色含岩屑钙质细砂岩中,呈与地层整合的板状、层状。矿石中硫化物主要为辉铜矿,矿体深部出现斑铜矿,极少量黄铁矿、闪锌矿等,硫化物多交代砂岩中胶结物或碎屑颗粒形成胶结结构,矿石发育稀疏浸染状、团块状、结核状等多种构造。矿石的硫同位素δ34SV-CDT在-33.4‰~-24.6‰之间。矿石的铅同位素组成206Pb/204Pb=18.376~18.607、207Pb/204Pb=15.612~15.655、 208Pb/204Pb=38.475~38.747。铜的硫化物矿化表现为含铜盆地流体(地下水)交代砂岩而沉淀,铜矿体形成于古近系细砂岩成岩晚期,矿石硫来源于细菌还原硫酸盐,矿石铅同位素组成指示成矿金属元素来自沉积盆地周围的蚀源区。  相似文献   
2.
新疆贝勒库都克锡矿带含锡花岗岩地质特征   总被引:28,自引:2,他引:28       下载免费PDF全文
本文根据矿物、岩石、微量元素、稀土元素及同位素的研究,重点讨论了我国近年新发现的北方地区第一条独立锡矿带的海西期含锡和非含锡花岗岩的地质特征,确定了该区花岗岩的成因类型及其与锡矿化的关系,认定该区伴随海西运动出现I型、S型和A型三种花岗岩。与锡矿化有关的属S型和A型花岗岩,它们是在早期(造山期)I型和S型花岗岩的基础上进一步演化而隶属造山晚期—造山期后的产物。在上述研究的基础上,总结了该区含矿花岗岩与无矿花岗岩的综合判别标志,为该区及邻区同类锡矿的找寻与研究提供了依据。  相似文献   
3.
新疆乌恰县乌拉根铅锌矿床地质特征和S-Pb同位素组成   总被引:5,自引:0,他引:5  
乌拉根矿床是喀什中新生界凹陷内新近勘查的具超大型远景的铅锌矿床。铅锌矿体呈板状,顺层分布于乌拉根向斜南、北两翼,容矿地层为下白垩统克孜勒苏群第五岩性段(K1kz5)褪色灰白色砂砾岩及古新统阿尔塔什组(E1a)泥质白云岩。矿石具块状、微细浸染状、细脉状、团斑状等构造及胶结结构、交代反映边结构等。乌拉根矿床硫化物δ34S值为-27.9‰~14.6‰,指示相邻层位中石膏、天青石等硫酸盐提供硫,同时有机物的热分解也可能作为硫的来源,硫的还原可能包括生物还原与有机质热化学还原两种模式。硫化物的206Pb/204Pb、207Pb/204Pb、208Pb/204Pb分别为18.528~18.663、15.611~15.669、38.616~38.839,极为均一,指示上地壳和造山带剥蚀区是成矿金属的来源。综合分析乌拉根铅锌矿床地质、地球化学特征,并与已有成因认识进行对比,判定乌拉根矿床是与盆地流体活动相关的砂岩型铅锌矿床。  相似文献   
4.
A regional isotopic study of Pb and S in hydrothermal galenas and U–Pb and S in potential source rocks was carried out for part of Moravia, Czech Republic. Two major generations of veins, (syn-) Variscan and post-Variscan, are defined based on the Pb-isotope system together with structural constraints (local structures and regional trends). The Pb-isotopic compositions of galena plot in two distinct populations with outliers in 206Pb/204Pb–207Pb/204Pb space. Galena from veins hosted in greywackes provides a cluster with the lowest Pb–Pb ratios: 206Pb/204Pb = 18.15–18.27, 207Pb/204Pb = 15.59–15.61, 208Pb/204Pb = 38.11–38.23. Those hosted in both limestones and greywackes provide the second cluster: 206Pb/204Pb = 18.37–18.44, 207Pb/204Pb = 15.60–15.63, 208Pb/204Pb = 38.14–38.32. These clusters suggest model Pb ages as Early Carboniferous and Triassic–Jurassic, the latter associated with MVT-like deposits. Two samples from veins hosted in Proterozoic rocks lie outside the two clusters: in metagranitoid (206Pb/204Pb = 18.55, 207Pb/204Pb = 15.64, 208Pb/204Pb = 38.29) and in orthogneiss (206Pb/204Pb = 18.79, 207Pb/204Pb = 15.73, 208Pb/204Pb = 38.54). The results from these two samples suggest an interaction of mineralizing fluids with the radiogenic Pb-rich source (basement?). The values of δ34S suggest the Paleozoic host rocks (mostly ?6.7 to +5.2‰ CDT) as the source of S for hydrothermal sulfides (mostly ?4.8 to +2.5‰ CDT). U–Pb data and Pb isotope evolutionary curves indicate that Late Devonian and Early Carboniferous sediments, especially siliciclastics, are the general dominant contributor of Pb for galena mineralization developed in sedimentary rocks. Plumbotectonic mixing occurred, it is deduced, only between the lower and the upper crust (the latter involving Proterozoic basement containing heterogeneous radiogenic Pb), without any significant input from the mantle. It is concluded that in the Moravo–Silesian and Rhenohercynian zones (including proximal districts in Poland) lead and sulfur have been mobilized from the adjacent rocks during multiple hydrothermal events in processes that are remarkably comparable in timing, geochemistry of fluids and nature of sources.  相似文献   
5.
Rutile, as an important component in alluvial or eluvial heavy mineral deposits, is known in southern Cameroon. These deposits are underlain by the Neoproterozoic low- to high-grade Yaoundé Group. Geochemical, thermometric, fluid inclusion and Pb isotopic studies of the rutile from alluvial and eluvial concentrates and from medium-grade micaschist from the nearby Yaoundé region permit the following conclusions: (1) alluvial and eluvial rutile of the Yaoundé region are derived from the degradation of metapelites, metamafic rocks and pegmatites of the nearby Yaoundé Group; (2) rutile in the Yaoundé Group formed during the Pan-African metamorphism, or was inherited as detrital rutile from a 900 Ma source. The study also shows that the rutile can be used to trace the history of the Pan-African belt north of the Congo craton.  相似文献   
6.
Pb-Isotope Analyses of USGS Reference Materials   总被引:1,自引:0,他引:1  
Conventional corrections for thermal ionisation mass spectrometer (TIMS) induced Pb-isotopic fractionation often result in a loss of accuracy because the commonly employed pure Pb reference materials (NIST SRM 981, 982) frequently exhibit markedly different fractionation behaviour to real geological samples. As a result, these SRMs are inappropriate for comparison and/or correction of inter-operator/ laboratory biases. A matrix-matched reference material would be preferable but, as yet, no systematic study has approached this problem. Here we present high quality Pb-isotope ratio determinations, obtained using a double spike procedure, for six USGS reference materials in an attempt to address this deficiency. Our data suggest that most of these rocks could be used as isotopic reference materials comparable, in terms of uncertainty, to the NIST SRMs. However, significant differences in isotopic composition exist between first (e.g. BCR-1) and second (e.g. BCR-2) generation samples. The cause of these differences remains unclear but has significant implications for their use as trace element reference materials.  相似文献   
7.
Gold and base metals of the Mpanda Mineral Field (MMF) is the focus of this paper. Gold veins and gold-bearing base metal occurrences are structurally controlled by conjugate sets of NW–SE and E–W trending faults and/or shear zones that crosscut high-grade metamorphic rocks and post-kinematic intrusions. It was anticipated that Palaeoproterozic country rocks could have been potential host rocks for the gold mineralisation in this area. This argumentation was based on Pb model ages of various deposits from the MMF. Recent fieldwork and Pb isotopic results presented herein indicate that epigenetic gold and base metal vein-type mineralisation in the MMF is post-Palaeoproterozoic.Our Pb isotope study concentrates on constraining the sources of metals in gold-bearing quartz reefs and base metal occurrences. Pb isotopes of whole rocks and minerals indicate that mineralisation was emplaced during the Neoproterozoic, contemporaneous with the intrusion of alkaline granites and carbonatite complexes (e.g., Sangu–Ikola carbonatite complex) at 720 Ma. The source of Pb in the mineral occurrences is compatible with that characteristic of the Palaeoproterozoic host rocks. Aeromagnetic data suggest that the gold-bearing, NNW–SSE trending area continues to the north beyond Mpanda town. Pb isotope results and aeromagnetic data have significant implications for future exploration programs within the region, in that the search should potentially focus on the defined geophysical borders and trendlines, and on Neoproterozoic, rather than Palaeoproterozoic vein systems.  相似文献   
8.
大西洋洋中脊TAG热液区硫化物铅和硫同位素研究   总被引:18,自引:3,他引:18  
位于大西洋洋中脊26.08°N的 TAG 热液区是目前己知的赋存在无沉积物覆盖的洋中脊区的一个最大的海底热液硫化物矿床。新测得来自 ODP-158航次钻孔的9件热液硫化物的铅、硫同位素组成;2件铁锰氧化物和1件底盘玄武岩的铅同位素组成。结果表明,矿石硫化物的铅同位素组成~(206)Pb/~(204)Pb 为18.2343~18.3181,~(207)pb/~(204)Ph 为15.4717~15.5061,~(208)Pb/~(204)Pb 为37.7371~37.8417;它们位于该区底盘玄武岩(~(206)Pb/~(204)Pb=18.1454,~(207)Pb/~(204)Pb=15.4572,~(208)Pb/~(204)Pb=37.6534)和近洋底铁锰氧化物(~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb,~(208)Pb/~(204)Pb 分别为18.6907~18.9264,15.5615~15.6279,38.1164~38.3687)的铅同位素组成之间。三者呈线性相关关系,说明硫化物中铅来源于地幔(玄武岩)与海水(铁锰氧化物)的两端元混合。硫化物的硫同位素组成δ~(34)S 为6.2‰~9.5‰,它明显高于地幔玄武岩的硫同位素组成(δ~(34)S=±0‰),也高于东太平洋海隆 EPR21°N(δ~(34)S=0.9‰~4.0‰)和大西洋洋中脊 MAR23°N(δ~(34)S=1.2‰~2.8‰)等热液活动区硫化物的硫同位素组成,这一特征反映了 TAG 热液体系中硫来源于地幔玄武岩硫与海水硫酸盐无机还原作用产生的硫的两端元混合。此,铅硫同位素研究为现代大洋底热液硫化物矿床形成过程中矿质来源及流体混合作用提供了十分有益的信息。  相似文献   
9.
《地学前缘(英文版)》2020,11(5):1621-1634
The Izu-Bonin arc system is sediment-poor(~400 m thick with no accretionary prism) and,therefore,the influence of the altered oceanic crust(AOC) is most likely the source of the documented along-arc lava compositional variations,especially in Pb isotopes.Izu-Bonin arc lava geochemistry suggests an influx of subduction component from an Indian-type AOC.However,samples drilled from the western Pacific geochemical reference site at Integrated Ocean Drilling Program Site 1149 implies subduction of a Pacific-type AOC.To solve the apparent discrepancy of slab input versus arc output in this arc system,samples of the AOC were dredged from vertical fault scarps of the subducting Pacific Plate along a transect from 27.5°N to 34.50 N.Samples range from tholeiitic to mildly alkalic mid-ocean ridge basalts as well as trachybasalts,basaltic trachyandesites,tephrites,and phono-tephrites.Isotope ratios also exhibit a range of values(~(87)Sr/~(86)Sr=0.70282-0.70673,143 Nd/144 Nd=0.512552-0.513174,~(206)Pb/204 Pb=18.43-20.00,207 Pb/204 Pb=15.40-15.67,~(208)Pb/~(204)Pb=37.75-39.55).Our results suggest that there is a geochemical variation in the AOC that is neither completely due to seawater or hydrothermal alteration,nor to petrogenetic processes.Rather,this variation is the result of the Pacific-Izanagi Ridge system tapping into a heterogeneous,plume-polluted mantle source during the Mid-Cretaceous volcanic event.The observed Pacific-type AOC is not responsible for the Indian-type Pb isotopic signature of Izu-Bonin arc lavas.This leads us to propose an alternative scenario where the Izu-Bonin arc lava Indian-type Pb isotopic signature originates from slab-derived fluids interacting and adsorbing Pb from an Indian-type mantle wedge through zone-refining.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号